
MotionTrace: IMU-based Trajectory Prediction for
Smartphone AR Interactions

Rahul Islam
Stevens Institute of Technology

Hoboken, USA

Vasco Miguel Liang Xu
University of Chicago

Chicago, USA

Karan Ahuja
Northwestern University

Evanston, USA

Abstract—Smartphone powered mobile Augmented Reality
(AR) applications require precise and accurate 6DoF localization
of the phone within a 3D space. This typically requires camera-
based localization systems that are power intensive and prone
to motion blurs, thereby limiting their usage. In such cases,
IMU-based methods are a promising alternative for low power
localization sensing. In this paper, we present MotionTrace,
a method for predicting a user’s handheld phone trajectory
using a smartphone’s inertial sensor. We evaluated MotionTrace
over future hand positions at 50, 100, 200, 400, and 800ms
time horizons using the large motion capture (AMASS) and
smartphone-based full-body pose estimation (Pose-on-the-Go)
datasets. Our results show that MotionTrace can estimate the
future phone position of the user with an average MSE between
0.11 - 143.62 mm across different time horizons.

I. INTRODUCTION

Augmented Reality (AR) blends digital elements with the
real world, creating interactive experiences in sectors like
healthcare, education, and entertainment. With tools such as
Apple’s ARKit and Google’s ARCore, AR technology is read-
ily available on everyday devices like smartphones and tablets.
By 2024, AR has reached a billion users. AR experiences
enhance the user’s field of view (FOV) by integrating digital
content, enabling interaction with digital elements overlaid
on physical surroundings. However, the widespread adoption
of AR is hindered by the need for high bandwidth and
continuous tracking for realistic experiences, which requires
trajectory prediction for FOV. High-quality AR experiences
require significant data transfers, including complex meshes
and textures, to make digital objects appear realistic within the
user’s FOV. This results in extensive rendering and possible
delays, leading to subpar user experiences due to prolonged
loading times before an AR experience can start.

Field-of-View (FOV)-dependent streaming, initially devel-
oped for 360-degree video platforms, optimizes video delivery
by adapting the streaming quality to the user’s current and
projected FOV, significantly reducing startup latency and data
transmission volume [1], [2]. This concept has been extended
to augmented reality (AR) applications with trajectory pre-
dictions, where techniques selectively enhance the resolution
and detail of AR content within or likely to fall within
the user’s immediate view, improving performance and user
experience [3]. However, AR presents unique challenges due
to its environments’ complex and dynamic nature, where
multiple objects often occupy the user’s FOV simultaneously,

necessitating a more comprehensive approach to FOV with
trajectory prediction and rendering immediately relevant AR
content with higher quality. Continuous camera-based tracking
in AR can degrade smartphone performance due to high power
consumption and processing demands, potentially leading to
overheating and reduced battery life, which in turn negatively
impacts user experience by limiting the device’s operational
duration and responsiveness. Despite initial successes, the
scope of trajectory prediction in AR remains under-explored,
offering avenues for significant improvements and innovations.

FOV prediction in AR, distinguished from 360-degree video
streaming by AR’s support for six degrees of freedom (6DOF)
with real-time trajectory information of user and interactions
with digitally superimposed objects on the real world, remains
an unresolved problem requiring tailored solutions [1], [4],
[5]. We propose MotionTrace, a novel approach that utilizes
the readily accessible Inertial Measurement Unit (IMU) data
from smartphones—leveraging historical data on hand position
combined with orientation and acceleration—to accurately
predict a user’s trajectory in AR, focusing solely on trans-
lation across three degrees of freedom. This method not only
addresses the complexity added by AR’s interactive digital
objects and user movements but also highlights the superiority
of using IMU over camera sensors. IMU-based tracking is
less resource-intensive, making it more suitable for continuous
operation without substantial power drain, thus ideal for long-
term applications where battery conservation is critical. Addi-
tionally, the IMU proves reliable where camera-based systems
falter, such as in poorly lit or visually occluded environments.
This makes IMUs exceptionally beneficial for persistent sens-
ing in diverse conditions. Our extensive evaluation of this
method uses large motion capture (AMASS) and smartphone-
based full-body pose estimation (Pose-on-the-Go) datasets,
effectively predicting future hand positions at intervals up to
800ms at 30fps, showcasing the practical applicability and
advantages of IMU data in dynamic, interactive AR settings
[5].

II. RELATED WORK

A. Trajectory Prediction in Augmented Reality

In bandwidth-demanding AR applications, several methods
have been developed to optimize the streaming of AR content,
enhancing user experience and reducing bandwidth. Noh et
al. [6] and Park et al. [7] describe cloud-assisted systems and
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3D tiling techniques, respectively, that select optimal levels
of detail and tiles based on bandwidth and user proximity.
Crucial to these technologies is the accurate prediction of
a user’s trajectory, which is enhanced by algorithms like
the Trace Match & Merge [5], using historical AR data to
predict future trajectory, and the ACE Dataset approach [3],
which analyzes user movements and digital object locations to
predict user focus areas. These predictive models are essential
for maintaining high visual fidelity and surpass traditional
trajectory prediction methods such as dead reckoning and
linear regression [1].

By predicting which parts of a scene a user is likely to
focus on, these systems can pre-load high-fidelity graphics in
those areas, thereby reducing latency and enhancing the overall
user experience. Such techniques underscore the importance of
predictive accuracy in the development of advanced AR plat-
forms, providing a direct link to the necessity of our research
in improving trajectory prediction through MotionTrace.

B. Inertial Sensors in Augmented and Virtual Reality

Inertial sensors are pivotal in augmenting user interaction
within AR and VR technologies through enhanced move-
ment tracking and prediction capabilities. The HOOV system
demonstrates this by using wrist-worn inertial sensors to
track hand positions outside the user’s visual field, improving
interaction with virtual objects and spatial awareness [8]. This
concept is further developed in studies like [9] and [10], where
inertial sensors facilitate real-time human arm movement pre-
diction for effective human-robot collaboration and enhance
3D hand trajectory forecasting in VR by integrating inertial
data with visual inputs, respectively. Extending these appli-
cations, [11], and [12] explore the use of inertial sensors in
generating collision-free robot trajectories, predicting complex
upper limb movements, and improving gesture recognition
algorithms in VR, significantly enhancing both safety and
efficiency in human-robot interactions.

Moreover, [13] explores the continuous 3D hand trajectory
prediction in VR, highlighting the potential of kinematics-
based models to predict user interactions with virtual objects,
thus preventing collisions and enhancing user experience.
Finally, [5] discuss the use of motion tracking and prediction in
enhancing the streaming of content in AR applications, where
accurate prediction of the user’s field of view can significantly
optimize bandwidth usage and reduce latency.

III. IMPLEMENTATION

Our focus is on the inertial sensor present in the smart-
phone. We operate under the assumption that IMU data from
the smartphone is always available. Utilizing historical IMU
data, we predict the future position of the hand holding the
smartphone. The IMU is known to consume less power than
the camera sensor, making it more suitable for continuous
sensing without causing significant resource consumption on
the device.

A. Model

For the learning architecture, we use a two-layer Bidi-
rectional LSTM with exogenous input, inspired by prior
works [14]. For the available IMU, our system uses historical
data of orientation (represented as a quaternion) as well as
acceleration as input, both in a global coordinate frame of
reference. We then flatten the historical data of hand positions
concatenated with historical IMU data of n sequence length to
create an model input vector of size n×10: 3 historical hand
position, 4 orientation, and 3 acceleration. We then create a
exogenous input (dimension=7) to model of orientation and
a acceleration at timestep n+1, as we assumed IMU data is
always available. With these input model predict future hand
position at time step n+1.

The LSTM layer is central to handling the sequential data,
with its bidirectional configuration allowing the model to learn
dependencies from both forward and backward sequences.
This LSTM layer consists of 2 layers and a hidden dimension
of 256 for each direction. Thus, the bidirectional setup effec-
tively doubles the LSTM output features to 512 per sequence.
After processing through the LSTM, the output at the last
time step, representing the most recent and relevant features
from both directions of the sequence, is concatenated with the
exogenous sensor data, resulting in a combined input vector of
519 dimensions (512 from LSTM and 7 from the exogenous
data). This combined data is first passed through a fully
connected layer with a dimension transformation from 519 to
256, integrating the features using a ReLU activation function
for non-linear processing. A dropout layer with a rate of
0.2 follows to prevent overfitting by randomly dropping units
during the training phase. Finally, the output is passed through
another fully connected layer, which reduces the dimension
from 256 to 3, corresponding to the three dimensions of the
hand position.

B. IMU Dataset Synthesis

We required a significant volume of data to train our future
hand position model. We employ the CMU [15], BMLrub
[16], and HDM05 [17] subsets from the AMASS [18] dataset
for the training and testing of our hand position model.
The AMASS dataset aggregates various optical marker-based
MoCap datasets and standardizes them into 3D human meshes
through the SMPL [19] model parameters, creating a compre-
hensive human motion database. It’s important to note that
AMASS has been used in several prior studies [14], [20] as
the foundation for creating synthetic datasets.

We utilize the synthetic data creation method as presented
in TransPose [14] and DIP [20]. Essentially, we affix virtual
IMUs to particular vertices in the SMPL mesh at the right
wrist and generate synthetic acceleration data from neighbor-
ing frames in the global reference frame. For the creation
of synthetic orientation data, we compute joint rotations in
relation to the global frame by compounding local rotations
from the joint towards the pelvis (root), adhering to the SMPL
kinematic chain.



Fig. 1: Samples of predictions by our model at 50, 100, 200, 400, and 800 ms.

(a) Average MSE across time horizons by dataset
and input sequence length

(b) Performance over time horizons for input
sequence length 3 sec

Fig. 2: Comparison of average MAE across different datasets
and time horizons.

C. Training

The model is trained end-to-end using the PyTorch and
PyTorch Lightning deep learning frameworks. The batch size
is set to 64 during training, and the Adam optimizer is utilized
to update the weights with a learning rate of 0.00001. This
process is guided by a learning rate scheduler set to plateau.
Training uses non-overlapping 3-second windows (or 180
sequence length) of paired IMU and translation data. The

model is trained to predict future hand positions using the
mean squared error (MSE) loss. The entire training, lasting
100 epochs or approximately 34 hours, is conducted on an
NVIDIA Tesla V100.

IV. EVALUATION

A. Dataset

We evaluate our method subset (CMU [15] (9.19hr), BML-
rub [16] (1.7hr), and HDM05 [17] (2.4hr)) of AMASS dataset
and on smartphone based full body pose estimatimate data
- Pose-on-the-Go (PTG) [21]. It’s worth noting that PTG is
collected in the real world. Evaluating our method using PTG
further demonstrates its applicability in real-world scenarios.
We synthesis IMU and hand position translation on AMASS to
train and test our model (See Section III-B). Furthermore the
PTG dataset already have hand position (smartphone position)
and orientation data. We compute the acceleration with the
help of hand position translation and timestamp in the dataset
for further training and evaluation.

B. Evaluation Results

We evaluated four different datasets in total. To further
assess the generalization capability of our proposed method,
we conducted a 4-fold cross-dataset evaluation. This involved
training on three subsets and testing on the remaining subset in
a round-robin fashion. Table I displays the experimental results
of various methods tested on the CMU, BMLrub, HDM05, and
PTG datasets. To evaluate our model for future hand position
prediction, we try non-overlapping 0.5, 1, 2, 3, and 4-second
windows of paired IMU and translation data, i.e., n (sequence
length) and IMU data at n + 1 time step, to predict hand
position at n+1 time step, we assume that IMU data is always
available. We use the translation predicted in n+1 time step as
input to predict future position at n+2, and so on. We report
the MSE score for each dataset at a prediction horizon of 50,
100, 200, 400, and 800 ms at 30fps.

Our results (Fig 2) show that all prediction errors stopped re-
ducing after 3 seconds of input data. The errors increase (Table



TABLE I: Results of cross-dataset evaluation for input se-
quence length 3 sec. The table shows average MSE in mm.

Time Horizon (ms) CMU BMLrub HDM05 PTG

50 0.84 0.11 0.45 5.36
100 1.35 0.17 0.73 9.32
200 2.74 0.32 1.40 19.66
400 7.87 0.78 3.80 52.74
800 30.28 2.61 12.79 143.62

I and Fig 2b) as the prediction time horizon increases across all
datasets. This is expected as longer prediction times generally
introduce more uncertainty into the estimation process. The
increasing trend in error rates at longer time horizons suggests
a limit to the predictability of movement using MotionTrace,
especially for datasets with complex movement dynamics like
CMU and PTG. For effective AR applications, focusing on
shorter prediction windows or improving the model’s ability
to handle complex movements might be necessary.

V. DISCUSSION AND CONCLUSION

Trajectory prediction is essential for enhancing the interac-
tivity and immersion of smartphone AR experiences. To this
end, we propose MotionTrace, a method to continuously esti-
mate a user’s hand position in 3D-space. This enables phone
position localization for trajectory prediction using inertial
sensors. We evaluated our method on a large motion capture
(AMASS) and smartphone-based full body pose estimation
(Pose-on-the-Go) dataset. Our method was able to predict
future hand positions with an average MSE ranging from 0.11 -
143.62 mm across different datasets for time horizons between
50 - 800 ms. We also found that 3 seconds of historical inertial
sensor data is sufficient for making this prediction. However,
our results showed that errors increase as the prediction time
horizon lengthens, leading to larger errors across all datasets.
The best results were found within a prediction time horizon
of 50 - 400 ms.

Our method, when used in conjunction with other methods
proposed in previous literature [3], [5], [7], [22], can pro-
vide incremental utility. We base our work on the premise
that inertial sensor data is always available on the phone.
It’s also presumed to consume less power than the camera
sensor, making it more suitable for continuous sensing without
significantly straining the device’s resources. This presents a
significant advantage over previous methods [3], [5] that rely
on continuous historical streaming to predict the trajectory of
FOV.
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